Why Calabi-Yau?

Why Calabi-Yau?

Compactification on Calabi–Yau n-folds are important because they leave some of the original supersymmetry unbroken. More precisely, in the absence of fluxes, compactification on a Calabi–Yau 3-fold (real dimension 6) leaves one quarter of the original supersymmetry unbroken if the holonomy is the full SU(3).

How many Calabi-Yau manifolds are there?

What’s more, there are many different 6D Calabi-Yau manifolds that could fit the string theory bill and, disappointingly, no-one was able to work out which was the “right” one. All this somewhat undermined the manifolds’ standing in physics.

What is mirror symmetry of Calabi-Yau manifolds in string theory?

In algebraic geometry and theoretical physics, mirror symmetry is a relationship between geometric objects called Calabi–Yau manifolds. The term refers to a situation where two Calabi–Yau manifolds look very different geometrically but are nevertheless equivalent when employed as extra dimensions of string theory.

Begin typing your search term above and press enter to search. Press ESC to cancel.

Back To Top